WORKSHOP

DÉNEIGEMENT DES VOIRIES : ADDITION SALÉE !

14 NOVEMBRE 2019

Réflexions sur les sels de déneigement et leurs alternatives

Anne-Claire DEWEZ

Département Eau de Bruxelles Environnement

Stéphan TRUONG Facilitateur Eau

- Appréhender les effets des sels sur l'environnement
- Réflexion sur l'utilisation des sels de déneigement
- Appréhender les produits de déneigement alternatifs et leurs caractéristiques
- Appréhender les techniques alternatives et leur efficacité

INTRODUCTION

IMPACTS
UTILISATION RAISONNÉE
PRODUITS DE DÉNEIGEMENT ALTERNATIFS
TECHNIQUES ALTERNATIVES

Les enjeux liés aux SELS de DENEIGEMENT

Sécurité Mobilité

Environnement

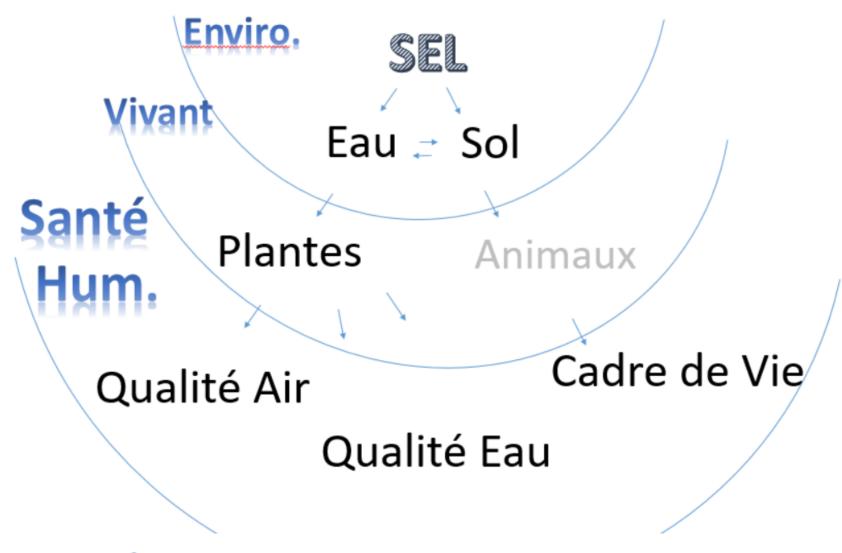
Les enjeux liés aux SELS de DENEIGEMENT

Gestion des risques

Sécurité

Définition des responsabilités Sensibilisation

Mobilité


Capacité/souplesse des autres réseaux de mobilité de prendre « le relais » en cas de neige

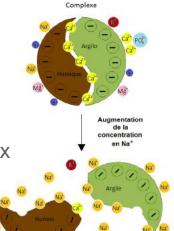
Environnement

Importance de la dose/concentration du milieu récepteur de l'état/dynamique de l'écosystème

INTRODUCTION

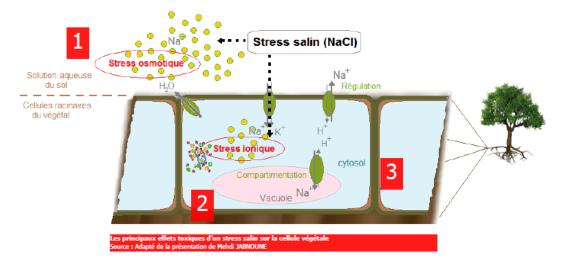
IMPACTS

UTILISATION RAISONNÉE
PRODUITS DE DÉNEIGEMENT ALTERNATIFS
TECHNIQUES ALTERNATIVES



IMPACTS SUR LES SOLS

NaCl → Na⁺ + Cl⁻


8

- Aucun dispositifs de dégradation
- ► Les ions chlorures (Cl⁻):
 - Aucune affinité avec les particules du sol
 - S'écoulent en suivant le flux dans les sols et les végétaux
- Le sodium (Na+):
 - Se fixe aux particules du sol
 - Diminue la capacité d'échange cationique (CEC)
 - Ne circule pas avec les eaux d'infiltration
 - ⇒ Déstructuration des sols par saturation des complexes argilohumiques
 - ⇒ Une teneur en Na+ supérieure à 10% de la CEC, l'effet sur la structure du sol devient significatif
 - ⇒ Les sols deviennent secs

- Stress osmotique
 - Ralentissement de l'absorption des nutriments par les racines
 - Inversion du flux, sortie d'eau des racines vers l'extérieur
- Stress hydrique et carence en éléments nutritifs
- Dessèchement et brûlures par contacts directs
 - Migration de l'eau hors des organes touchés
- Stress ionique
 - Entrée dans les cellules d'une eau chargée en Na+ et Cl-
 - Compétition avec les ions K+ induit un dérèglement métabolique

IMPACTS SUR LES VÉGÉTAUX

10

Symptômes proches de ceux-ci exprimés en cas de sècheresse

IMPACTS

UTILISATION RAISONNÉE

PRODUITS DE DÉNEIGEMENT ALTERNATIFS TECHNIQUES ALTERNATIVES

RÉDUCTION DES QUANTITÉS D'ÉPANDAGE AU STRICT NÉCESSAIRE

- Définir les quantités à épandre au préalable
- Déneigement mécanique soigné préalable (raclage)
- ▶ Quantité épandue lors d'une intervention de viabilité hivernale : [SETRA, CETE de l'Est et Ministère de l'Écologie, de l'Énergie et du Développement Durable]
 - Quantité moyenne de sel épandue : 55 g/m²
 - Préconisations :

12

Traitement préventif et curatif contre la neige : 10 à 15 g/m²,

Traitement contre le verglas : 10 à 30 g/m²

⇒ Pour des villes où la température ne chute jamais en dessous des -10°C, dose moyenne préconisée : 20 g de sel / m² pour fonte de la neige/glace sur la chaussée

- Quantité épandue dosée en fonction de la météo
- ► Formations du personnel des services d'épandages à des techniques parcimonieuses
- Campagnes de sensibilisation des particuliers
- Choix des outils d'épandage : Appareils permettant un dosage précis
 - Epandeuses ou mini-épandeuses modernes, asservies à la route, avec optimisation des réglages
 - Caméras infrarouges pour connaître la température de la route
 - Système d'Aide à la Décision en Viabilité Hivernale (SADVH)
- Eviter les systèmes de rémunération par quantité épandue

IMPACTS UTILISATION RAISONNÉE

PRODUITS DE DÉNEIGEMENT ALTERNATIFS

TECHNIQUES ALTERNATIVES

PRODUITS DE DÉNEIGEMENT ALTERNATIFS

Produit chimique	Impacts environnementaux	Propriétés	Quantité à épandre	Capture rectangCoûts
Formiate de potassium	Ecologique	Solidification de l'eau à -58°C .	Sous forme liquide : 15 à 30 g/m2.	Entre 15 000 et 30 000 €/km2 (1 000 € /T)
Acétate de calcium	Biodégradable	Ne fait pas fondre neige/glace, diminution du manteau neigeux	X	3 à 5 fois plus cher que le NaCl
Chlorure de calcium	X	Solidification de l'eau à -51°C (concentration 30%)	Sous forme solide ou en saumure : 10 g/m2.	Entre 4 000 et 5 000 €/km2 (400-500 €/T)
Chlorure de magnésium	X	Solidification de l'eau à -33°C (concentration 22%)	Sous forme de flocons :	Entre 3 000 et 5 000 €/km2 (500-600 €/ T)

PRODUITS DE DÉNEIGEMENT ALTERNATIFS

Produit chimique	Avantages	Inconvénients
Formiate de potassium	Meilleur effet dégelant que le NaCl	Coût élevé
Acétate de calcium	Biodégradable	Coût élevé Efficacité diminue en dessous de - 7°C
Chlorure de calcium	Meilleur effet dégelant que le NaCl	Coût élevé Phénomène de "savonage" Toxicité (planctons et invertébrés aquatiques)
Chlorure de magnésium	Meilleur effet dégelant que le NaCl	Coût élevé Phénomène de "savonage" Toxicité (espèces aquatiques)

16

PRODUITS DE DÉNEIGEMENT ALTERNATIFS

Autres types de substrats

- Mélasse de sucre mélangée à du sel
- Cendres
- Mélange de copeaux de bois et de MgCl₂
- Composés abrasifs
 - Gravillons rocheux
 - Sable ou l'épandage de
 - Scories

Problèmes de colmatage

Dégâts de projection

Besoin de plusieurs passage

- ⇒ Efficacité limitée
- ⇒ Peu utilisés par les services d'épandage

Autres types de substrats

- Bouillie de sel
 - Mixte de saumure et de sels en grain
 - Démarrage rapide de la fonte
 - Permet d'accroître l'efficacité du sel épandu

⇒ Diminution des quantités à épandre

TECHNIQUES ALTERNATIVES

IMPACTS
UTILISATION RAISONNÉE
PRODUITS DE DÉNEIGEMENT ALTERNATIFS

Conditions de vie optimales

Sensibilité accrue aux sels de déneigement si les conditions de vie ne sont pas optimales

⇒ Limiter les autres stress

- Nécessité de connaître les propriétés physicochimiques du sol
- Prévoir les zones de déstructuration potentielles

Aménagement d'espaces filtrants (en amont de la fosse de plantation)

- **⇒** Bande tampon
- ⇒ Végétaux tolérants et bio-accumulateurs de sel
- Noues filtrantes
- Marais filtrants
 - Aménagements pas toujours intégrables (milieu dense)

Conditions de vie optimales

- Techniques d'optimisation des conditions de vie
 - **Dimensions** généreuses des **fosses de plantation** (développement racinaire suffisant)
 - Apport de matière organique pour éviter la déstructuration et/ou utilisation de substrat sablo-caillouteux
 - Eviter et contrer le tassement du sol
 - Couvrir les surfaces plantées par une sous-végétation (couvre-sol)
 - A la suite de la mort de l'arbre et en cas de replantation : changement du substrat avarié et remplacement par de la **terre riche en humus** et en substance nutritive
 - Installation de systèmes d'irrigation et d'aération
 - Sarclage régulier de l'assiette de l'arbre et apport d'humus pour favoriser l'aération et la viabilité des microorganismes
 - Fumure régulière avec un engrais complet équilibré qui comporte de la matière organique

Espèces « tolérantes » au sel

- Majorité d'espèces indigènes peu tolérantes au sel
- Souvent plantes herbacées et petites graminées

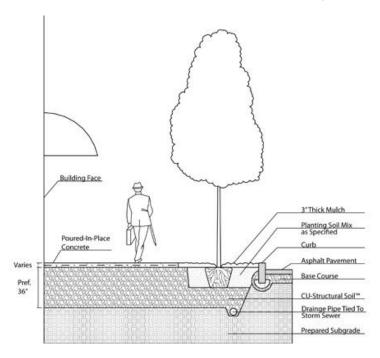
Arbres halotolérants	Arbres halosensibles	Herbacées halotolérantes	Herbacées halosensibles
Aulne	Cerisier	Laîche à épis distants	Trèfle
Chêne	Charme	Cranson danois	Paturins
Frêne	Epicéa	Roseau commun	
Pin	Hêtre		
	If		
	Mélèze		
	Merisier		
	Orme		
	Peuplier		
	Sapin		
	Tilleul		

Compositions des sols

- Aménagements de sols sablo-caillouteux
 - Drainage efficace des eaux salées
- Structural soil (Terre à structure renforcée)
 - Forte porosité du sol
 - Apport minimal de terre végétale
 - · Associé à un système de drainage

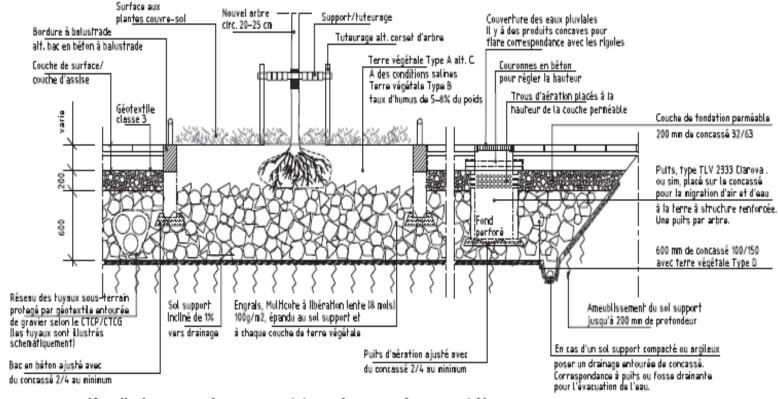
Espace pour le développement racinaire

Drainage important des eaux salées


- **⇒** Empêche le sel de boucher les pores de la terre
- ⇒ Prévient l'asphyxie, la déshydratation et la stagnation de l'eau

- Structural soil (Terre à structure renforcée)
 - Terre mise en place pauvre en éléments nutritifs et mauvaise rétention d'eau

Arbres résistants


Arrosages parfois nécessaires et épandages d'engrais

9.9 TERRE À STRUCTURE RENFORCÉE – DESCRIPTION DE LA MISE EN PLACE (VERSION COURTE)

ALTERNATIVES

Nouvelle plantation – arbre avec sous-végétation dans une surface imperméable Section type, échelle 1:50

Dispositifs de filtration

- ► Filtre d'argile
 - Chargés négativement

Retient les ions sodium (néfastes pour les végétaux)

⇒ Limitation de la déstructuration du sol

- Argiles de type « montmorillonite » et « vermiculite » car fixent beaucoup plus d'ions (de l'ordre de 10 fois plus) que les argiles de type « kaolinite ».
- Proportion de sable permet de garder un aspect drainant
- Composé de deux parties

Un géotextile de 1 à 2 mm d'épaisseur

Un mélange argile (30%), sable (60%), limons (10%) sur 15 cm d'épaisseur.

Dispositifs de filtration

- Filtre de paille ou de phragmites
 - Rétention de l'eau salée
 - 20 à 50 cm de paille ou de phragmites, à disposer avant l'hiver, en amont de la fosse de plantation
- Filtre de matière organique
 - Chargée négativement (somme des charges)
 - Capacité d'échange cationique élevée (CEC)
 - Rétention des ions sodium
 - Permet d'éviter la déstructuration des sols
 - Pouvoir absorbant plus important que l'argile
 - Tourbe, compost et autres éléments organo-minéral (mélange d'argile et de tourbe).
 - Dispositif:

Un géotextile de 2 à 5 mm d'épaisseur,

Un apport de matière organique de type tourbe ou compost sur une hauteur de 2 à 5 cm

⇒ Selon la CEC, environ 35 kg de matière organique au m² peut absorber les ions sodium épandus à 20 g de sel pendant 10 salages.

Amendement de gypse

- Principe : percolation des ions calcium, remplacent les ions sodium du sol
- Permet de restaurer la structure initiale des sols
- Appliqué en curatif, après la période hivernale, ou en préventif
- Préconisations : épandage de 1 à 3 kg de gypse par m2 de sol de dispositif végétalisé

- Impacts de sels
 - Déstructuration des sols
 - Différents types de stress (hydrique, osmotique et ionique)
 - Symptômes de déshydratation
- Utilisation raisonnée des sels de déneigement
 - Epandage moyen actuel: 50 mg/m²
 - Epandage moyen nécessaire : 20 mg/m²
 - Plan d'épandage et outils adaptés
- Produits de déneigement alternatifs
- Peu utilisés, très coûteux ou peu efficaces
- Techniques alternatives
 - Conditions de croissance optimales

Dimensions des fosses de plantation

Terre riche en humus et en nutriments

Systèmes d'irrigation et de drainage

- Peu d'espèces tolérantes au sel
- Composition des sols
 - Sols sablo-caillouteux
 - Structural soil

Peu de terre, sol caillouteux

Porosité importante

- Drainage important
- **⇒** Espace de développement des racines
- Dispositifs de filtration
 - Argile
 - Paille et phragmites
 - Matière organique
 - Amendement de gypse

Anne-Claire DEWEZ

Département Eau de Bruxelles Environnement

Stéphan TRUONG

Facilitateur EAU pour le compte de Bruxelles Environnement écorce sa

MERCI POUR VOTRE ATTENTION

